Sandia

Exceptional service in the national interest @ National
Laboratories

In situ Visualization with the Sierra
Simulation Framework Using
ParaView Catalyst

Jeff Mauldin, Thomas Otahal, David Karelitz,
Alan Scott, Warren Hunt, Nathan Fabian

What is In situ Visualization?).

= A typical visualization workflow:

= Run simulation and output the full 3d mesh data at some sparse
time interval.

= After simulation completes, load output data into a visualization
tool such as ParaView, EnSight, Vislt, etc.

" |n situ Visualization executes a visualization pipeline on the

processors running the simulation during or between simulation
time steps.

= |n transit Visualization executes a visualization pipeline on a set of
compute nodes separate from simulation nodes; sending data
across an HPC network.

= Data products other than images are possible such as: decimated
isosurfaces, mesh subsets, plots, and analysis results.

In situ and in transit workflows) Bz

= |n situ processing provides “tightly-coupled” analysis capabilities through
libraries linked directly with the simulation. SNL has collaborated on
developing an in situ capability designed for this purpose.

VDA VDA Simulation Data
Science Code ercictent

API Service
VDA Data Storage

Diagram of in situ workflow, accomplished through the use of Catalyst,
an open source, ParaView-based analysis library.

= |n transit processing provides “loosely-coupled” analysis capabilities by
performing the analysis on separate processing resources. SNL provides
this capability through a “data services” capability designed for this

purpose.

Sim Dat
Science Code UIDE Sim Data VDA e Persistent

API Service
VDA Data Storage

Diagram of in transit workflow, in which the simulation code
communicates with data service nodes to perform analysis operations.

What is Catalyst and how is it used? @&

: (Managed by Kitware Inc.)

= The Catalyst library links with the simulation code and enables in
situ analysis and visualization.
= Language support for Python, C++, and Fortran.

= (Catalyst editions package various levels of functionality such as
rendering, Python support, and various classes of VTK filters.

= (Catalyst Requirements:

= Write adapter code to create a VTK mesh from the simulation data either
copying data or using the simulation’s data structures.

= Simulation code calls ParaView Catalyst with the created VTK mesh each
time in situ output is required.

= Create a Python visualization script from the ParaView co-processing
plugin, or drive in situ visualization through direct C++ implementation.

The Sierra Simulation Framework @&

= Sandia simulation code framework for massively parallel finite
element simulations.

= Physics for solid mechanics, fluid dynamics, heat transfer, etc.

= Simulation codes share a common input deck syntax and
parsing engine, which allows codes to be coupled easily from
the level of the input deck.

= Sierra’s |/O subsystem writes out full-mesh, unstructured grid
Exodus Il files with associated data at a user controlled time
interval.

Sandia
’11 National
Laboratories

Initial Attempt at Integration with Sierra

Catalyst is statically linked to Sierra. Large binary code size increase for
users not using in situ visualization.

Minimal alteration to Sierra input deck—basically alternative output
section and python file to call—all flexibility arbitrarily in Python code.

Requires analysts to create a script with the Catalyst ParaView plugin
(which may need adjusting), potentially do Python programming or
employ help of a visualization programmer, and then have Python scripts
with somewhat arbitrary ways to change parameters.

Not easily testable.
High barrier to first use by analysts already familiar with Sierra.
Does not really “feel” integrated.

No support from simulation input checking. Simulation has to start
running and call back visualization script before any error checking occurs.

Sandia
’11 National
Laboratories

Current Integration Strategy

Command block structure and command syntax looks like already existing
Sierra commands.

Visualization commands are available in the existing Sierra GUI editor
tools the same as other Sierra commands.

Minimal changes are required to an existing Exodus Il output command
blocks to produce a visualization (convention over configuration).

Increasingly advanced visualization capabilities available with additional
commands in input deck, always trying to provide “good defaults” to let
user create visualization without having to learn a bunch of details first.

Complete ParaView capability still available to users via already existing
python scripting technique.

Catalyst linked to Sierra as a dynamic library at run-time. Sierra based
codes that do not require in situ visualization do not load the dynamic
library.

Sandia
’11 National

Laboratories

Minimal Example

= Change the type of output database to catalyst from exodus.

catalyst block, accepting all default values

begin results output catalyst example results block
At Step 0, Increment = 200

export displacement

catalyst will displace geometry by default
nodal Variables = displacement as displ
database type = catalyst

end results output catalyst example output block

Sandia
National _
Laboratories

Default Camera Views

Default behavior is to
provide 8 views of mesh,
6 axis-aligned and 2
from first and eight
octant. Default coloring
is by block id. View is
centered on data
bounding box. Works
well for meshes with
interesting geometry,
not as well for
simulations where
anything interesting is
happening inside the
mesh. Requires minimal
changes to the input
deck.

Catalyst Block Example

Sandia
National
Laboratories

h

= Adding a catalyst block allows for additional configuration of
default parameters. Here, we color the mesh by von Mises stress.

catalyst block,

accepting all default values

begin results output catalyst example results block

At Step O, 200

export displacement

Increment =

catalyst will displace geometry by default

nodal Variables = displacement as

database type = catalyst

element Variables = von mises

begin catalyst
show axes = true

show time annotation = true

color by scalar = von mises

end

end results output catalyst example

displ

output block

Sandia
National

Laboratories

=]
(=]
(=1
T3]
=
-
L]
2
=
3]
=]
—4

Vor_misss

e |
Time: 0.000140 o —

0

1.88=+10

Sandia
’11 National
Laboratories

Image Set and Camera Blocks

= More complexity to allow multiple image sets (e.g. colored by
different variables).

= Extensive camera controls.

= Look at focal point based on absolute position or position relative to
bounding box data.

= Look at element or node (following).

= Distance between camera and focal point in absolute terms or relative
to data bounding box size.

= Specify look direction(s).
= Alternatively specify camera position and look direction.

= Easy to bring in camera settings from other packages, although
currently tedious.

Image Set and Camera Block Example @i
(Time annotation)

element Variables = von mises
nodal Variables = velocity

begin catalyst
begin camera myZoomCamera
look at absolute point = 0 0 O

look direction =1 1 1
look at relative distance = 0.5
end
begin imageset vm set
camera = myzZzoomCamera
color by scalar = von mises
show time annotation = true
end
begin imageset vel set
camera = myzZzoomCamera
color by vector magnitude = velocity
end

end

Sandia
National _
Laboratories

VOrLImisss

o S
limmei0:000750 § =

Sandia
’11 National
Laboratories

Additional Features and Block Types

= Representation blocks support color legend management,
background and text colors, time annotation, and surface/

edge/wireframe display of the geometry.

= (QOperation blocks provide chains of visualization operations.
Operation block types for clips, slices, isosurfaces, and
thresholds.

= Plot over time block.
= Scatter plot block.

Memory Usage)

Laboratories

= Virtual memory image of code on nodes is significant. Python
wrapping of ParaView is large piece of this.

= With shared libraries and multiple cores per node this cost is
amortized.

= C++ implementation would reduce code size greatly.
= Exploring use of Catalyst editions containing fewer libraries.

= Mesh data is copied into VTK datasets
= New shallow copy capability can limit this issue.

" Pipeline operations have the potential to use more memory.

= Discovered multi-image RenderView issue. Resolved by
sharing RenderView among image pipelines.

National

Catalyst Resource Usage Test) .

Simulation problem details:

Number of nodes = 1123420
Number of elements = 1050604
Element type = hex 8

Sierra Adagio thermal stress problem.

Total number of Sierra iterations = 23942
Number of calls to Catalyst/Exodus = 27

HPC hardware details:

8 cores per compute node

CPU: 2.93 GHz dual socket/quad core, Nehalem X5570 processors
Compute Memory: 12 GB RAM per compute node (1.5 GB per core)
Interconnect: 3D torus InfiniBand

Catalyst Resource Usage Test

begin catalyst

begin threshold threshold_vm
variable scalar = VON_MISES
keep between = 5e3 3.54e4
end threshold

begin clip clip_in_half
input = threshold_vm
absolute point on plane =0.00.1 0.2
plane normal=-100

end clip

begin camera my_camera
camera at absolute point = 1.586 0.724 -0.324

look at absolute point = 0.0410 -0.027 0.182
end camera

begin imageset show_images
operation = clip_in_half
camera = my_camera
color by scalar = VON_MISES
color legend range = 1.41 3.54e4
end imageset

begin plot over time
variable scalar = VON_MISES

end plot over time

end catalyst

Sandia
National _
Laboratories

m Sandia
Per Core Max Total Memory in Usage Laboraores
(non-heap memory shared among 8 cores per node)

3000
Before Fix \
2500
A N mm—\
2000
o
2
()
)
a
z
o
aE: /
= After Fix
1000
500 W
0
16 32 64 128 256 512
Cores
e=gmmSierra Only e=Catalyst One Image e=w=Catalyst Eight Images

e Catalyst Eight Images Improved Memory =¥ Catalyst One Image Improved Memory

Sandia
m National

Laboratories

Per Core Max Heap Allocation

1600
A
st
1400 M
Before Fix
1200
= 1000
2
()
[-T]
a
o> 800
>
5 — o
g
2 500
—>
400 After Fix =
oy —
200 w
0 T T T T T 1
16 32 64 128 256 512
Cores
e=gmmSierra Only e Catalyst One Image @'¥=Catalyst Eight Images

e Catalyst Eight Images Improved Memory =@ Catalyst One Image Improved Memory

Sandia
m National
Laboratories

Total Execution Time

7000

6000

5000

4000

Seconds

3000

2000

1000 N

Cores

e=gmmSierra Only e{J=Catalyst One Image e='w=Catalyst Eight Images

@i Catalyst Eight Images Improved Memory @ Catalyst One Image Improved Memory

Sandia
m National
Laboratories

Percentage Of Total Execution Time Spent In Catalyst

70

60

Before Fix \

N

50

N
o

Percentage

w
o

€ After Fix

20

10

Cores

e=(mm(Catalyst One Image ®=™Catalyst Eight Images “#*>Catalyst Eight Images Improved Memory “==(Catalyst One Image Improved Memory

EXpe riment Driver (sAnDp2013-1122)

= Customer use case: characterize fragments in a
shock physics explosive simulation

= Code: CTH
= Analyst: Jason Wilke
= Critical steps
= Find fragments (multiple operations
required)
= Characterize fragments (mass, velocity, etc.)
= Extract useful information

Identifying fragments is a complex part of the
analysis, and serves as a useful way to characterize
the operations.

The full range of data experiments was run at 32k
cores on Cielo. Partial experiments were performed
at 64k cores. This report presents results from the
32k core runs.

Sandia
National
Laboratories

National

Fragment detection .

= QOperations required for fragment detection (requires a
watertight surface)
1. Find block neighbors
2. Build a conforming mesh over AMR boundaries
3. ldentify boundaries of fragments

Step1&2

Sandia
’11 National
Laboratories

Implemented Workflows

" Insitu: A CTH job that directly runs in situ data analysis

= Baseline: Basic algorithm with somewhat redundant step of global
communication to find AMR block neighbors

= Refined: Improved algorithm that gets AMR block neighbors from CTH

" In transit: CTH transfers data to separate server job

= Extra nodes: CTH job size same as other runs, extra nodes are used to
allocate the VDA service

= |nternal nodes: CTH job given fewer nodes that are assigned to VDA
service so that together both jobs use the same nodes as other runs

= Post-processing: Write Spyplot files from CTH, then post
process with ParaView batch script

National

In Transit Allocations h) e,

“Extra Nodes” allocated for VDA services

--16 Nodes -

Simulation Vis

National

Experiment Configurations h) e,

= All experiments performed on Cielo supercomputer at LANL,
jointly managed by Los Alamos National Laboratory and
Sandia National Laboratories
= 8,944 node Cray XE6
= Node: 2 AMD Opteron 6136 (Magny-Cours) 8-way processor chips

Total of 16 cores/node
2.4 GHz peak computation speed per core

= Peak of 1.37 Petaflops
= 32 GB memory/node

National

Experiment, cont’d) ..

= All experiments completed 500 cycles (i.e., timestep
calculations) of the CTH code.

= The first four experiments executed an analysis operation
once every 10 cycles

= For standard full-mesh data output, the CTH code was set to
output the same number of time steps as the in situ and in
transit experiments

= Total number of analysis operations is the same

= Data captured was from instrumented code and HPCToolkit

National

Experiment, cont’d) ..

= Each experiment was run in a strong scaling fashion with
three different datasets.

= Each data set comes from the same initial conditions but with a
different maximum level of refinement

= Measurements of different job sizes with different data set sizes
provides a weak scaling overview.

CTH In transit Server
Most In transit Internal Extra Nodes Internal Nodes
Cores Nodes Cores Nodes Cores Nodes Cores Nodes
33K Blocks — 5 levels

128 8 96 6 16 2 16 2

256 16 224 14 16 2 16 2

512 32 480 30 16 2 16 2

1,024 64 992 62 16 2 16 2
220K Blocks — 6 levels

1,024 64 768 48 128 16 128 16

2,048 128 1,792 112 128 16 128 16

4,096 256 3,840 240 128 16 128 16

8,192 512 7,936 496 128 16 128 16
1.5M Blocks — 7 levels

4,096 256 2,496 156 1,024 128 800 100

8,192 512 6,592 412 1,024 128 800 100

16,384 1,024 14,784 924 1,024 128 800 100

32,768 2,048 31,168 1,948 1,024 128 800 100

65,536 4,096 63,936 3,996 1,024 128 800 100

Pipeline Summary Timing (1.5m blocks) @&

200 Experiments

<~ Disk—-Based Post-Processing
=+ In Situ (baseline)

= In Situ (refined)

/= In Transit (100 internal nodes)
=/ In Transit (128 extra nodes)

150 -

j
Y

~100 -

Time

. R i e
2

I I I I
4096 8192 16384 32768
Client Ranks

Acceptable scaling performance, with the exception of the baseline algorithm.

Sandia
m National
Laboratories

Timing Per Task

200 ; 200 : 200
O CTHInit @ CTH O CTHInit @ CTH O CTHInit @ 1/O
W VizIlnit @ Viz | VizIlnit @ Viz @ CTH B Viz
150 — - 150 : : 150 — :
— 33k blocks : 219k blocks 1.5m blocks — 33k blocks : 219k blocks : 1.5m blocks — :
€ £ £ 33k blocks 219k blocks 1.5m blocks
< 100 - : < 100 - : 5 100 - :
£ £ £
= [[
N I I N I II N I
o II- I.I . Il- I.I . Il- I..
TETII 2288 LS IS T ITIITESES XS TRBFIIETESTEES 38
~ NN 0D O O © O ~ O — M I~ - AN IO O O O O — O «— ™M I~ ~ NN 0D O O O O ~ O «~ M I~
In situ baseline In situ refined Disk-based post-processing
200 ; 200
O CTHInit O Xfer Data : O CTHInit @ Xfer
@ CTH O Wait @ CTH O Wait |
~ "7 askblocks 219k blocks 1.5m blocks _ 10 7 33kblocks 219k blocksé 1.5m blocks e CTH scales well.
< : : £ : K
£ ; ; £ ' . .
g 100 - : s 5 100 - Baseline algorithm does
= =
N I I iﬂu N I I iﬂu Dk 10,
. ilms lli | BlEs |li Disk /0 not bad

NI I 22LEYENTS LI NI YT L LY TS
TP 22R959m 8 NTS SR ZgRIBE
In transit extra nodes In transit internal nodes

Sandia
m National
Laboratories

Memory Footprint (on code side)

128

256
512
1024
1024
2048
4096
8192
4096
§ 8192
S 16384
32768

Cores

7 AMR Levels | 6 AMR Levels | 5 AMR Levels
Cores

2 4 6 8 10 12 14 16 18 20
Maximum Memory Used Per Node (GB)

0

Cores

ores

)

7 AMR Levels | 6 AMR Levels | 5 AMR Levels
Cores

0 2 4 6 8 10 12 14 16 18 20
Maximum Memory Used Per Node (GB)

Memorx overhead Eenerallx falls between 25% and 50%

